

C POWDER TEEL METALLURGY

PLASTIC MOULD STEEL

voestalpine BÖHLER Edelstahl GmbH & Co KG www.voestalpine.com/bohler-edelstahl

BENEFIT IN RESPECT OF VERSATILITY AND PERFORMANCE

BÖHLER M390 MICROCLEAN is a martensitic chromium steel produced with powder metallurgy. Due to its alloying concept this steel offers **high wear resistance** and **good corrosion resistance** – the perfect combination for **best application properties.**

- » High wear resistance
- » Good corrosion resistance
- » Excellent grindability
- » High mirrorfinish polishability
- » High toughness
- » Minimum dimensional changes
- » Better resistance to vibrations and mechanical shocks

ENABLE

- » Long and consistant tool life
- » Reproducibility of production processes
- » High precision components

BENEFIT

» INCREASED PRODUCTIVITY » REDUCED UNIT COSTS

FIELD OF APPLICATIONS

» Mould inserts for the production of CDs and DVDs

- » Moulds for the processing of chemically aggressive plastics containing highly abrasive fillers
- » Moulds for the processing of duroplasts
- » Moulds for the production of chips for the electronics industry
- » Screws for injection moulding machines
- » Non return valves
- » Linings for injection moulding cylinders

Due to its outstanding property profile BÖHLER M390 MICROCLEAN is used in fields

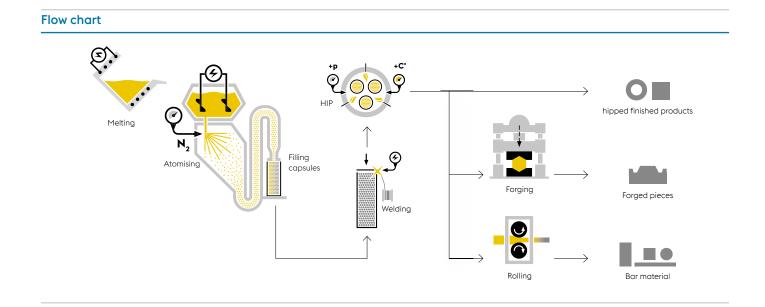
aside from plastics processing industry, such as:

- » Machine components for the paper and food processing industry
- » Knives

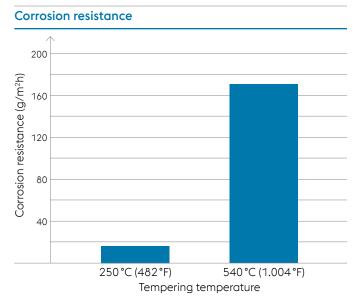
Chemical composition (average %)						
с	Si	Mn	Cr	Мо	v	w
1,90	0,70	0,30	20,00	1,00	4,00	0,60

Property profile of BÖHLER tool steels for the plastics processing industry

	BÖHLER K390 MICROCLERIN	
resistance	BÖHLER K190 MICROCLERN	BÖHLER M390
Wear resi	BÖHLER K890	BÖHLER M368 MICROCLEAN
	8-12% chromium steels	12-18% corrosion resistant chromium steels
	abrasive plastics	chem. aggressive plastics


Corrosion resistance *

* High tempered, weight loss test with 20% boiling acetic acid, 24 h.


THE ADVANTAGES OF MICROCLEAN MATERIALS

THE WORLD'S MOST MODERN PM STEEL PRODUCTION PLANT.

voestalpine BÖHLER developes and produces high-performance PM-high speed steels and -tool steels, which increase the life of the tool by several hundred percent. **voestalpine BÖHLER** sets a worldwide benchmark with the development of a powder plant of the 3rd generation. These materials, known by the name **MICROCLEAN**, offer even further improvements in wear resistance, corrosion resistance, compressive strength, toughness, fatigue strength and polishability.

For highest corrosion resistance use lower tempering temperatures. Heat treatment: austenitizing at 1150 °C (2.100 °F)/20 min./5 bar, without subzero-cooling

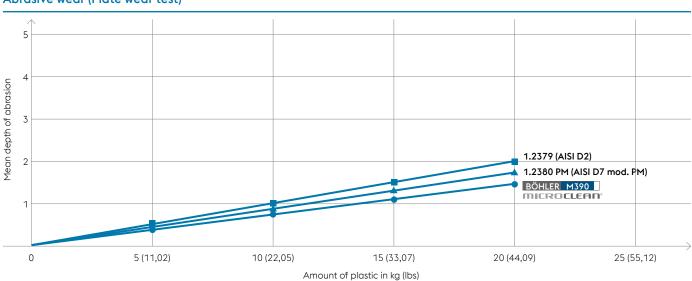
Weight loss test: measured after 24 h with 20% boiling acetic acid

TESTED FOR HIGHEST REQUIREMENTS

Density at 20 °C (68 °F)	7,54 kg/dm³ (0.272 lbs/in³)
Thermal conductivity at 20 °C (68 °F)	16,5 W/(m.K) (114 Btu in/ft ² h°F)

Thermal expansion between 20 °C and °C (68– °F)					
100 °C	200 °C	300 °C	400 °C	500 °C	
10,4	10,7	11,0	11,2	11,6	10 ⁻⁶ m/(m.K)
210 °F	390 °F	570 °F	750 °F	930 °F	
5.78	5.94	6.11	6.22	6.44	10 ⁻⁶ in/in°F

Regarding applications and processing steps that are not expressly mentioned in this product description/data sheet, the customer shall in each individual case be required to **consult us**.



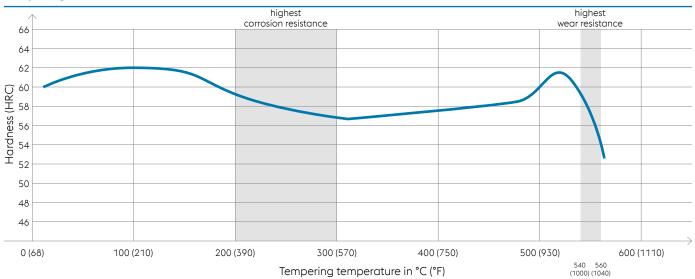
A STEEL FOR EXTREMELY HIGH REQUIREMENTS


During both, the injection of purely abrasive acting PA66 with 30% glass fibres at 300 °C (570 °F) and the injection of abrasive and corrosive acting PES with 30% glass fibres at 400 °C (750 °F), BÖHLER M390 MICROCLEAN shows the best wear and corrosion resistance in comparison to 1.2379 (D2) and 1.2380 PM.

The formation of corrosive sulfurous degradation products during processing of PES significantly increases the load on the tool. BÖHLER M390 MICROCLEAN shows under these exposures in direct comparison to 1.2379 (D2) and 1.2380 PM a clear reduced material removal.

Abrasive wear (Plate wear test)

Plastic: Polyamide 66 (PA66), Trade name: Ultramid A3WG6, Glass fibre content: 30 wt.%, Temperature: 300 °C (570 °F)



Plastic: Polyethersulfon (PES), Trade name: Ultrason E2010G6, Glass fibre content: 30 wt.%, Temperature: 400 °C (750 °F)


Source: Institute for Plastics Processing at the University of Leoben

HEAT TREATMENT RECOMMENDATIONS

Tempering chart (without subzero treatment)

Vacuum hardening: 1150 °C (2100 °F) / 30 min / N_2 , 5 bar Tempering: 2 x 2 hours Specimen dimensions: dia. 20.5 x 15 mm (0.81 x 0.59 inch)

Tempering chart (with subzero treatment) highest corrosion resistance highest wear resistance 66 64 62 Hardness (HRC) 28 26 27 27 50 48 46 100 (210) 200 (390) 300 (570) 400 (750) 500 (930) 600 (1110) 0 (68) 510 530 (950) (990) Tempering temperature in °C (°F)

BÖHLER PLASTIC MOULD STEEL

Vacuum hardening: 1150 °C (2100 °F) / 30 min / $N_{\rm 2},$ 5 bar

Specimen dimensions: dia. 20.5 x 15 mm (0.81 x 0.59 inch)

Subzero treatment: -70 °C (-95 °F), 2 hours

Tempering: 2 x 2 hours

11

HEAT TREATMENT RECOMMENDATIONS

Heat treatment from supplier

- » Supplied condition: max. 280 HB
- » Optimal soft annealing is only possible after hot forming.

Stress relieving

- » 650 °C (1200 °F)
- » After through-heating, soak for 4 hours in a neutral atmosphere.
- » Furnace cooling up to 300 °C (570 °F), followed by air

Hardening

» 1100 to 1180 °C (2010 – 2155 °F)/oil, N₂

 Holding time: After through-heating: 20–30 minutes for a hardening temperature of 1100–1150 °C (2010–2100 °F)
5–10 minutes for a hardening temperature of 1180 °C (2155 °F)

Tempering for highest corrosion resistance

- » Subzero treatment for transformation of retained austenite
- » Slow heating to tempering temperature
- » Time in furnace 1 hour for each 20 mm (0.79 inch) of workpiece thickness, but at least 2 hours
- » For information on the achievable hardness after tempering please refer to the tempering chart.
- » Tempering: 200 to 300 °C (390 570 °F)

Tempering for highest wear resistance

- » Subzero treatment recommended
- » A subzero treatment immediately following hardening leads to increased tempering hardness values at austenitising temperatures ≥ 1150 °C (≥ 2100 °F), [Risk of stress cracking]
- » Slow heating to tempering temperature
- » Time in furnace 1 hour for each 20 mm (0.79 inch) of workpiece thickness, but at least 2 hours
- » For information on the achievable hardness after tempering please refer to the tempering chart.
- » Triple tempering 20 °C (68 °F) above the secondary hardening maximum is necessary in order to achieve a complete transformation of retained austenite.

MACHINING RECOMMENDATIONS

Turning with sintered carbide

Depth of cut mm (inch)	0.5 – 2 (.02 – .04)	1 – 4 (.04 – .16)	4 - 8 (.1631)	over 8 (over .31)
Feed mm / rev. (inch/rev.)	0.1 - 0.3 (.004012)	0.2 - 0.4 (.008016)	0.3 – 0.8 (.012 – .031)	0.5 – 1.5 (.020 – .060)
Cutting speed v _c (m/min) (f.p.m)	130 – 260 (425 – 850)	100 - 220 (330 - 720)	80 - 140 (260 - 460)	30 - 90 {100 - 295)
Recommended BOEHLERIT-geometry	FP, FMP	MP, MRP	MRP	RP, BR, BRP
BOEHLERIT grade	LCP15T	LCP15T, LCP25T	LCP25T, LC240F	LC240F
ISO grade	P15	P15, P20	P20, P30	P30, P40

Condition: soft annealed. Figures given are guidelines only.

Turning with high speed steel

Depth of cut mm (inch)	0.5 (.02)	3 (.12)	6 (.24)	
Feed mm / rev. (inch/rev.)	0.1 (.004)	0.4 (.016)	0.8 (.031)	
BÖHLER-/DIN-grade	S700 / DIN S10-4-3-10			
Cutting speed v _c (m/min) (f.p.m)				
Tool life 60 min.	30 - 20 (100 - 65)	20 - 15 (65 - 50)	18 - 10 (60 - 35)	
Rake angle	14°	14°	14°	
Clearance angle	8°	8°	8°	
Inclination angle	-4°	-4°	-4°	

Drilling with sintered carbide

Drill diameter mm (inch)	3 - 8 (.1231)	8 – 20 (.31 – .80)	20 - 40 (.80 - 1.6)	
Feed mm/rev. (inch/rev.)	0.02 - 0.05 (.001002)	0.05 - 0.12 (.002005)	0.12 - 0.18 (.005007)	
BOEHLERIT/ISO-grade	HB10 / K10			
Cutting speed v _c (m/min) (f.p.m)	50 - 35 (165 - 115)	50 - 35 (165 - 115)	50 - 35 (165 - 115)	
Point angle	115° – 120°	115° – 120°	115° – 120°	
Clearance angle	5°	5°	5°	

Milling with sintered carbide

-			
Cutting speed v_c (m/min) (f.p.m)	160 - 230 (525 - 755)	150 - 200 (490 - 655)	120 - 170 (395 - 560)
BOEHLERIT grade	BCH10M, BCP25M	BCH30M, BCP35M	BCH30M, BCK20M
ISO grade	H10, P25	H30, P35	H30, K20
F _z Milling 90° mm (inch)	0.1 - 0.3 (.004012)	0.1 - 0.3 (.004012)	0.1 - 0.3 (.004012)
F _z Milling 45° mm (inch)	0.15 - 0.8 (.006031)	0.15 - 0.8 (.006031)	0.15 - 0.8 (.006031)
F_{z} High feed cutting mm (inch)	0.8 - 2.5 (.03110)	0.8 - 2.5 (.03110)	0.6 - 3.0 (.02412)

Milling with inserted tooth cutter

Feed mm/tooth (inch/tooth)	up to 0.2 (.008)
Cutting speed v_c (m/min) (f.p.m)	
BOEHLERIT SBF/ISO P25	120 - 60 (395 - 195)
BOEHLERIT SB40/ISO P40	70 - 45 (230 - 150)
BOEHLERIT ROYAL 635/ISO P35	80 - 60 (260 - 195)

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. Measurement data are laboratory values and can deviate from practical analyses. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.

voestalpine BÖHLER Edelstahl GmbH & Co KG Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/50304/20-6046 F. +43/50304/60-7563 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

M390EN - 01.2019

